Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 402: 134360, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303363

RESUMO

This work aims to determine the effect of genotype x environment (GxE) interaction that influence blackcurrant (Ribes nigrum) fruit quality. We applied metabolomics-driven analysis on fruits from four cultivars grown in contrasting European-locations over two seasons. By integrating metabolomics and sensory analysis, we also defined specific metabolic signatures associated with consumer acceptance. Our results showed that rainfall is a crucial factor associated with accumulation of delphinidin- and cyanidin-3-O-glucoside, the two mayor blackcurrant pigments meanwhile temperature affects the main organic acid levels which can be decisive for fruit taste. Sensorial analysis showed that increases in terpenoid and acetate ester volatiles were strongly associated with higher appreciation score, while proacacipetalin, a cyanogenic-glycoside, was positively associated to bitter taste. Our results pave the way for the selection of high-quality cultivars and suitable production sites for blackcurrant cultivation.


Assuntos
Ribes , Ribes/genética , Ribes/metabolismo , Frutas/genética , Frutas/metabolismo , Estações do Ano , Extratos Vegetais/metabolismo , Genótipo
2.
Metabolomics ; 16(2): 25, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32030531

RESUMO

INTRODUCTION: Commercially, blackcurrants (Ribes nigrum L.) are grown mainly for processing, especially for juice production. They are valued for their high levels of polyphenols, especially anthocyanins, which contribute to their characteristic deep colour, but also as a good source of vitamin C. Recently, evidence has accrued that polyphenols, such as anthocyanins, may have specific human health benefits. OBJECTIVE: The aims of this study were to investigate the genetic control of polyphenols and other key juice processing traits in blackcurrants. METHODS: The levels, over 2 years, of vitamin C, citrate, malate, succinate, total organic acids, total anthocyanins and total phenolics together with 46 mainly polyphenol metabolites were measured in a blackcurrant biparental mapping population. Quantitative trait loci (QTLs) for these traits were mapped onto a high-density SNP linkage map. RESULTS: At least one QTL was detected for each trait, with good consistency between the 2 years. Clusters of QTLs were found on each of the eight linkage groups (LG). For example, QTLs for the major anthocyanidin glucosides, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, co-localised with a QTL for total anthocyanin content on LG3 whereas the major anthocyanidin rutinosides, delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, had QTLs on LG1 and LG2. Many of the QTLs explained a high proportion of the trait variation, with the most significant region, on LG3 at ~ 35 cM, explaining more than 60% of the variation in the coumaroylated metabolites, Cyanidin-coumaroyl-glucose, Delphinidin-coumaroyl-glucose, Kaempferol-coumaroyl-glucose and Myricetin-coumaroyl-glucose. CONCLUSION: The identification of robust QTLs for key polyphenol classes and individual polyphenols in blackcurrant provides great potential for marker-assisted breeding for improved levels of key components.


Assuntos
Polifenóis/genética , Polifenóis/metabolismo , Locos de Características Quantitativas/genética , Ribes/genética , Ribes/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
3.
Front Plant Sci ; 9: 1235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210515

RESUMO

Blackcurrant fruit collected at six stages of development were assessed for changes in gene expression using custom whole transcriptome microarrays and for variation in metabolite content using a combination of liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. Principal components analysis demonstrated that fruit development could be clearly defined according to their transcript or metabolite profiles. During early developmental stages, metabolite profiles were dominated by amino acids and tannins, whilst transcript profiles were enriched in functions associated with cell division, anatomical structure morphogenesis and cell wall metabolism. During mid fruit development, fatty acids accumulated and transcript profiles were consistent with seed and embryo development. At the later stages, sugars and anthocyanins accumulated consistent with transcript profiles that were associated with secondary metabolism. Transcript data also indicated active signaling during later stages of fruit development. A targeted analysis of signaling networks revealed a dynamic activation and repression of almost 60 different transcripts encoding transcription factors across the course of fruit development, many of which have been demonstrated as pivotal to controlling such processes in other species. Transcripts associated with cytokinin and gibberellin were highly abundant at early fruit development, whilst those associated with ABA and ethylene tended to be more abundant at later stages. The data presented here provides an insight into fruit development in blackcurrant and provides a foundation for further work in the elucidation of the genetic basis of fruit quality.

5.
Front Plant Sci ; 7: 1132, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524994

RESUMO

Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.

6.
Front Plant Sci ; 5: 767, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610448

RESUMO

It is usually thought that adequate winter chill is required for the full flowering of many temperate woody species. This paper investigates the sensitivity of blackcurrant bud burst and flowering to natural weather fluctuations in a temperate maritime climate, and compares a range of chill models that have been proposed for assessing the accumulation of winter chill. Bud break for four contrasting cultivars are compared in an exceptionally cold and in a mild winter in Eastern Scotland. The results confirm the importance of chilling at temperatures lower than 0°C and demonstrate that no single chilling function applies equally to all blackcurrant cultivars. There is a pressing need for further model development to take into account the relationship between chilling temperatures and warming temperatures occurring both during and after the chill accumulation period.

7.
BMC Plant Biol ; 11: 147, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035129

RESUMO

BACKGROUND: Deep-level second generation sequencing (2GS) technologies are now being applied to non-model species as a viable and favourable alternative to Sanger sequencing. Large-scale SNP discovery was undertaken in blackcurrant (Ribes nigrum L.) using transcriptome-based 2GS 454 sequencing on the parental genotypes of a reference mapping population, to generate large numbers of novel markers for the construction of a high-density linkage map. RESULTS: Over 700,000 reads were produced, from which a total of 7,000 SNPs were found. A subset of polymorphic SNPs was selected to develop a 384-SNP OPA assay using the Illumina BeadXpress platform. Additionally, the data enabled identification of 3,000 novel EST-SSRs. The selected SNPs and SSRs were validated across diverse Ribes germplasm, including mapping populations and other selected Ribes species.SNP-based maps were developed from two blackcurrant mapping populations, incorporating 48% and 27% of assayed SNPs respectively. A relatively high proportion of visually monomorphic SNPs were investigated further by quantitative trait mapping of theta score outputs from BeadStudio analysis, and this enabled additional SNPs to be placed on the two maps. CONCLUSIONS: The use of 2GS technology for the development of markers is superior to previously described methods, in both numbers of markers and biological informativeness of those markers. Whilst the numbers of reads and assembled contigs were comparable to similar sized studies of other non-model species, here a high proportion of novel genes were discovered across a wide range of putative function and localisation. The potential utility of markers developed using the 2GS approach in downstream breeding applications is discussed.


Assuntos
Mapeamento Cromossômico/métodos , Marcadores Genéticos , Ribes/genética , Transcriptoma , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Ligação Genética , Genótipo , Técnicas de Genotipagem , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA
8.
Funct Plant Biol ; 34(12): 1080-1091, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32689438

RESUMO

Blackcurrant (Ribes nigrum L.) is a widely grown commercial crop valued for its high vitamin C (l-ascorbic acid, AsA) content. In the present study, a systematic analysis of the mechanism of fruit AsA accumulation was undertaken. AsA accumulation occurred during fruit expansion and was associated with high in situ biosynthetic capacity via the l-galactose pathway and low rates of turnover. Cessation of AsA accumulation was associated with reduced biosynthesis and increased turnover. Translocation of AsA from photosynthetic or vegetative tissues contributed little to fruit AsA accumulation. Manipulation of substrate availability by defoliation had no effect on fruit AsA concentration but significantly reduced fruit yields. Supply of the AsA precursor l-galactono-1,4-lactone to intact, attached fruit transiently increased fruit AsA concentration which rapidly returned to control levels after removal of the compound. These data suggest strong developmental, metabolic and genetic control of AsA accumulation in blackcurrant fruit and indicate the potential for breeding high AsA cultivars.

9.
Phytochem Anal ; 17(5): 284-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17019929

RESUMO

A rapid method for the quantification of L-ascorbic acid (1) in berry fruit by HPLC with photodiode array detection is presented. L-Ascorbic acid was resolved on a C18 monolithic column with aqueous buffer, after which the column was washed with acetonitrile to remove lipophilic compounds prior to re-equilibration for analysis of the next sample. Using the monolithic column format with high mobile phase flow rates, the entire separation, wash and re-equilibration were achieved in 3 min. With the exception of gooseberry (Ribes uva-crispa), for which an interfering compound co-eluted, concentrations of 1 could be determined in a wide range of berry fruits after extraction in metaphosphoric acid without further sample preparation. Using this extraction method, recoveries of 1 in excess of 85% were achieved. Fruit or juice extracts were stable in 5% metaphosphoric acid for at least 4 h and stability could be extended to longer than 150 h by the addition of the reducing agent tris(2-carboxethyl)phosphine hydrochloride. Following validation, the method was utilised for the phenotyping of fruit in a Scottish Crop Research Institute (SCRI) Ribes nigrum L. breeding population of 300 individuals. An improved extraction method allowed extraction, quantification of 1 and data analysis to be undertaken in less than one working week.


Assuntos
Ácido Ascórbico/análise , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Ribes/química , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...